
StakeMachine Documentation
Release 0.0.1

Fabian Schuh

Jun 03, 2018





Contents

1 Basics 1

2 Strategies 3

3 Developing own Strategies 7

4 Indices and tables 15

i



ii



CHAPTER 1

Basics

1.1 Setup

1.1.1 Installation

pip3 install stakemachine [--user]

If you install using the --user flag, the binaries of stakemachine and uptick are located in ~/.local/bin.
Otherwise they should be globally reachable.

1.1.2 Adding Keys

It is important to install the private key of your bot’s account into the pybitshares wallet. This can be done using
uptick which is installed as a dependency of stakemachine:

uptick addkey

1.1.3 Configuration

You will need to create configuration file in YAML format. The default file name is config.yml, otherwise you can
specify a different config file using the --configufile X parameter of stakemachine.

Read more about the Configuration.

1.1.4 Running

The bot can be run by:

stakemachine run

1



StakeMachine Documentation, Release 0.0.1

It will ask for your wallet passphrase (that you have provide when adding your private key to pybitshares using
uptick addkey).

If you want to prevent the password dialog, you can predefine an environmental variable UNLOCK, if you understand
the security implications.

1.2 Configuration

The configuration of stakemachine happens through a YAML formated file and takes the following form:

# The BitShares endpoint to talk to
node: "wss://node.testnet.bitshares.eu"

# List of bots
bots:

# Name of the bot. This is mostly for logging and internal
# use to distinguish different bots
NAME_OF_BOT:

# Python module to look for the strategy (can be custom)
module: "stakemachine.strategies.echo"

# The bot class in that module to use
bot: Echo

# The market to subscribe to
market: GOLD:TEST

# The account to use for this bot
account: xeroc

# Custom bot configuration
foo: bar

1.2.1 Usig the configuration in custom strategies

The bot’s configuration is available to in each strategy as dictionary in self.bot. The whole configuration is
avaialable in self.config. The name of your bot can be found in self.name.

2 Chapter 1. Basics



CHAPTER 2

Strategies

2.1 Wall Strategy

This strategy simply places a buy and a sell wall into a specific market using a specified account.

2.1.1 Example Configuration

# BitShares end point
node: "wss://node.bitshares.eu"

# List of Bots
bots:

# Only a single Walls Bot
Walls:

# The Walls strategy module and class
module: stakemachine.strategies.walls
bot: Walls

# The market to serve
market: HERO:BTS

# The account to sue
account: hero-market-maker

# We shall bundle operations into a single transaction
bundle: True

# Test your conditions every x blocks
test:

blocks: 10

(continues on next page)

3



StakeMachine Documentation, Release 0.0.1

(continued from previous page)

# Where the walls should be
target:

# They relate to the price feed
reference: feed

# There should be an offset
offsets:

buy: 2.5
sell: 2.5

# We'd like to use x amount of quote (here: HERO)
# in the walls
amount:

buy: 5.0
sell: 5.0

# When the price moves by more than 2%, update the walls
threshold: 2

2.1.2 Source Code

1 from math import fabs
2 from pprint import pprint
3 from collections import Counter
4 from bitshares.amount import Amount
5 from stakemachine.basestrategy import BaseStrategy
6 from stakemachine.errors import InsufficientFundsError
7 import logging
8 log = logging.getLogger(__name__)
9

10

11 class Walls(BaseStrategy):
12 def __init__(self, *args, **kwargs):
13 super().__init__(*args, **kwargs)
14

15 # Define Callbacks
16 self.onMarketUpdate += self.test
17 self.ontick += self.tick
18 self.onAccount += self.test
19

20 self.error_ontick = self.error
21 self.error_onMarketUpdate = self.error
22 self.error_onAccount = self.error
23

24 # Counter for blocks
25 self.counter = Counter()
26

27 # Tests for actions
28 self.test_blocks = self.bot.get("test", {}).get("blocks", 0)
29

30 def error(self, *args, **kwargs):
31 self.disabled = True
32 self.cancelall()

(continues on next page)

4 Chapter 2. Strategies



StakeMachine Documentation, Release 0.0.1

(continued from previous page)

33 pprint(self.execute())
34

35 def updateorders(self):
36 """ Update the orders
37 """
38 log.info("Replacing orders")
39

40 # Canceling orders
41 self.cancelall()
42

43 # Target
44 target = self.bot.get("target", {})
45 price = self.getprice()
46

47 # prices
48 buy_price = price * (1 - target["offsets"]["buy"] / 100)
49 sell_price = price * (1 + target["offsets"]["sell"] / 100)
50

51 # Store price in storage for later use
52 self["feed_price"] = float(price)
53

54 # Buy Side
55 if float(self.balance(self.market["base"])) < buy_price * target["amount"][

→˓"buy"]:
56 InsufficientFundsError(Amount(target["amount"]["buy"] * float(buy_price),

→˓self.market["base"]))
57 self["insufficient_buy"] = True
58 else:
59 self["insufficient_buy"] = False
60 self.market.buy(
61 buy_price,
62 Amount(target["amount"]["buy"], self.market["quote"]),
63 account=self.account
64 )
65

66 # Sell Side
67 if float(self.balance(self.market["quote"])) < target["amount"]["sell"]:
68 InsufficientFundsError(Amount(target["amount"]["sell"], self.market["quote

→˓"]))
69 self["insufficient_sell"] = True
70 else:
71 self["insufficient_sell"] = False
72 self.market.sell(
73 sell_price,
74 Amount(target["amount"]["sell"], self.market["quote"]),
75 account=self.account
76 )
77

78 pprint(self.execute())
79

80 def getprice(self):
81 """ Here we obtain the price for the quote and make sure it has
82 a feed price
83 """
84 target = self.bot.get("target", {})
85 if target.get("reference") == "feed":
86 assert self.market == self.market.core_quote_market(), "Wrong market for

→˓'feed' reference!" (continues on next page)

2.1. Wall Strategy 5



StakeMachine Documentation, Release 0.0.1

(continued from previous page)

87 ticker = self.market.ticker()
88 price = ticker.get("quoteSettlement_price")
89 assert abs(price["price"]) != float("inf"), "Check price feed of asset! (

→˓%s)" % str(price)
90 return price
91

92 def tick(self, d):
93 """ ticks come in on every block
94 """
95 if self.test_blocks:
96 if not (self.counter["blocks"] or 0) % self.test_blocks:
97 self.test()
98 self.counter["blocks"] += 1
99

100 def test(self, *args, **kwargs):
101 """ Tests if the orders need updating
102 """
103 orders = self.orders
104

105 # Test if still 2 orders in the market (the walls)
106 if len(orders) < 2 and len(orders) > 0:
107 if (
108 not self["insufficient_buy"] and
109 not self["insufficient_sell"]
110 ):
111 log.info("No 2 orders available. Updating orders!")
112 self.updateorders()
113 elif len(orders) == 0:
114 self.updateorders()
115

116 # Test if price feed has moved more than the threshold
117 if (
118 self["feed_price"] and
119 fabs(1 - float(self.getprice()) / self["feed_price"]) > self.bot[

→˓"threshold"] / 100.0
120 ):
121 log.info("Price feed moved by more than the threshold. Updating orders!")
122 self.updateorders()

6 Chapter 2. Strategies



CHAPTER 3

Developing own Strategies

3.1 Base Strategy

All strategies should inherit stakemachine.basestrategy.BaseStrategy which simplifies and unifies the
development of new strategies.

3.1.1 API

class stakemachine.basestrategy.BaseStrategy(config, name, onAccount=None, onOrder-
Matched=None, onOrderPlaced=None,
onMarketUpdate=None, onUpdate-
CallOrder=None, ontick=None, bit-
shares_instance=None, *args, **kwargs)

Base Strategy and methods available in all Sub Classes that inherit this BaseStrategy.

BaseStrategy inherits:

• stakemachine.storage.Storage

• stakemachine.statemachine.StateMachine

• Events

Available attributes:

• basestrategy.bitshares: instance of ´‘bitshares.BitShares()‘‘

• basestrategy.add_state: Add a specific state

• basestrategy.set_state: Set finite state machine

• basestrategy.get_state: Change state of state machine

• basestrategy.account: The Account object of this bot

• basestrategy.market: The market used by this bot

• basestrategy.orders: List of open orders of the bot’s account in the bot’s market

7



StakeMachine Documentation, Release 0.0.1

• basestrategy.balance: List of assets and amounts available in the bot’s account

Also, Base Strategy inherits stakemachine.storage.Storage which allows to permanently store data
in a sqlite database using:

basestrategy["key"] = "value"

Note: This applies a json.loads(json.dumps(value))!

account
Return the full account as bitshares.account.Account object!

Can be refreshed by using x.refresh()

balance(asset)
Return the balance of your bot’s account for a specific asset

balances
Return the balances of your bot’s account

cancelall()
Cancel all orders of this bot

execute()
Execute a bundle of operations

market
Return the market object as bitshares.market.Market

orders
Return the bot’s open accounts in the current market

3.2 Storage

This class allows to permanently store bot-specific data in a sqlite database (stakemachine.sqlite) using:

self["key"] = "value"

Note: Here, self refers to the instance of your bot’s strategy when coding yaour own strategy.

The value is persistently stored and can be access later on using:

print(self["key"]).

Note: This applies a json.loads(json.dumps(value))!

3.2.1 SQLite database

The user’s data is stored in its OS protected user directory:

OSX:

• ~/Library/Application Support/<AppName>

Windows:

8 Chapter 3. Developing own Strategies



StakeMachine Documentation, Release 0.0.1

• C:Documents and Settings<User>Application DataLocal Settings<AppAuthor><AppName>

• C:Documents and Settings<User>Application Data<AppAuthor><AppName>

Linux:

• ~/.local/share/<AppName>

Where <AppName> is stakemachine and <AppAuthor> is ChainSquad GmbH.

3.2.2 Simple example

1 from stakemachine.basestrategy import BaseStrategy
2

3

4 class StorageDemo(BaseStrategy):
5 def __init__(self, *args, **kwargs):
6 super().__init__(*args, **kwargs)
7 self.ontick += self.tick
8

9 def tick(self, i):
10 print("previous block: %s" % self["block"])
11 print("new block: %s" % i)
12 self["block"] = i

Example Output:

Current Wallet Passphrase:
previous block: None
new block: 008c4c2424e6394ad4bf5a9756ae2ee883b0e049
previous block: 008c4c2424e6394ad4bf5a9756ae2ee883b0e049
new block: 008c4c257a76671144fdba251e4ebbe61e4593a4
previous block: 008c4c257a76671144fdba251e4ebbe61e4593a4
new block: 008c4c2617851b31d0b872e32fbff6f8248663a3

3.3 Statemachine

The base strategy comes with a state machine that can be used by your strategy.

Similar to Storage, the methods of this class can be used in your strategy directly, e.g., via self.get_state(),
since the class is inherited by Base Strategy.

3.3.1 API

class stakemachine.statemachine.StateMachine(*args, **kwargs)
Generic state machine

add_state(state)
Add a new state to the state machine

Parameters state (str) – Name of the state

get_state()
Return state of state machine

3.3. Statemachine 9



StakeMachine Documentation, Release 0.0.1

set_state(state)
Change state of the state machine

Parameters state (str) – Name of the new state

3.4 Events

The websocket endpoint of BitShares has notifications that are subscribed to and dispatched by stakemachine. This
uses python’s native Events. The following events are available in your strategies and depend on the configuration
of your bot/strategy:

• onOrderMatched: Called when orders in your market are matched

• onOrderPlaced: Called when a new order in your market is placed

• onUpdateCallOrder: Called if one of the assets in your market is a market-pegged asset and someone
updates his call position

• onMarketUpdate: Called whenever something happens in your market (includes matched orders, placed
orders and call order updates!)

• ontick: Called when a new block is received

• onAccount: Called when your account’s statistics is updated (changes to 2.6.xxxx with xxxx being your
account id number)

• error_ontick: Is called when an error happend when processing ontick

• error_onMarketUpdate: Is called when an error happend when processing onMarketUpdate

• error_onAccount: Is called when an error happend when processing onAccount

3.4.1 Simple Example

class Simple(BaseStrategy):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

""" set call backs for events
"""
self.onOrderMatched += print
self.onOrderPlaced += print
self.onUpdateCallOrder += print
self.onMarketUpdate += print
self.ontick += print
self.onAccount += print

3.5 Simple Echo Strategy

3.5.1 API

class stakemachine.strategies.echo.Echo(*args, **kwargs)

10 Chapter 3. Developing own Strategies



StakeMachine Documentation, Release 0.0.1

error(*args, **kwargs)
What to do on an error

print_UpdateCallOrder(i)
Is called when a call order for a market pegged asset is updated

A developer may want to filter those to identify own orders.

Parameters i (bitshares.price.CallOrder) – Call order details

print_accountUpdate(i)
This method is called when the bot’s account name receives any update. This includes anything that
changes 2.6.xxxx, e.g., any operation that affects your account.

print_marketUpdate(i)
Is called when Something happens in your market.

This method is actually called by the backend and is dispatched to onOrderMatched,
onOrderPlaced and onUpdateCallOrder.

Parameters i (object) – Can be instance of FilledOrder, Order, or CallOrder

print_newBlock(i)
Is called when a block is received

Parameters i (str) – The hash of the block

Note: Unfortunately, it is currently not possible to identify the block number for i alone. If you need to
know the most recent block number, you need to use bitshares.blockchain.Blockchain

print_orderMatched(i)
Is called when an order in the market is matched

A developer may want to filter those to identify own orders.

Parameters i (bitshares.price.FilledOrder) – Filled order details

print_orderPlaced(i)
Is called when a new order in the market is placed

A developer may want to filter those to identify own orders.

Parameters i (bitshares.price.Order) – Order details

3.5.2 Full Source Code

1 from stakemachine.basestrategy import BaseStrategy
2 import logging
3 log = logging.getLogger(__name__)
4

5

6 class Echo(BaseStrategy):
7 def __init__(self, *args, **kwargs):
8 super().__init__(*args, **kwargs)
9

10 """ set call backs for events
11 """
12 self.onOrderMatched += self.print_orderMatched
13 self.onOrderPlaced += self.print_orderPlaced

(continues on next page)

3.5. Simple Echo Strategy 11



StakeMachine Documentation, Release 0.0.1

(continued from previous page)

14 self.onUpdateCallOrder += self.print_UpdateCallOrder
15 self.onMarketUpdate += self.print_marketUpdate
16 self.ontick += self.print_newBlock
17 self.onAccount += self.print_accountUpdate
18 self.error_ontick = self.error
19 self.error_onMarketUpdate = self.error
20 self.error_onAccount = self.error
21

22 def error(self, *args, **kwargs):
23 """ What to do on an error
24 """
25 # Cancel all future execution
26 self.disabled = True
27

28 def print_orderMatched(self, i):
29 """ Is called when an order in the market is matched
30

31 A developer may want to filter those to identify
32 own orders.
33

34 :param bitshares.price.FilledOrder i: Filled order details
35 """
36 print("order matched: %s" % i)
37

38 def print_orderPlaced(self, i):
39 """ Is called when a new order in the market is placed
40

41 A developer may want to filter those to identify
42 own orders.
43

44 :param bitshares.price.Order i: Order details
45 """
46 print("order placed: %s" % i)
47

48 def print_UpdateCallOrder(self, i):
49 """ Is called when a call order for a market pegged asset is updated
50

51 A developer may want to filter those to identify
52 own orders.
53

54 :param bitshares.price.CallOrder i: Call order details
55 """
56 print("call update: %s" % i)
57

58 def print_marketUpdate(self, i):
59 """ Is called when Something happens in your market.
60

61 This method is actually called by the backend and is
62 dispatched to ``onOrderMatched``, ``onOrderPlaced`` and
63 ``onUpdateCallOrder``.
64

65 :param object i: Can be instance of ``FilledOrder``, ``Order``, or
→˓``CallOrder``

66 """
67 print("marketupdate: %s" % i)
68

69 def print_newBlock(self, i):
(continues on next page)

12 Chapter 3. Developing own Strategies



StakeMachine Documentation, Release 0.0.1

(continued from previous page)

70 """ Is called when a block is received
71

72 :param str i: The hash of the block
73

74 .. note:: Unfortunately, it is currently not possible to
75 identify the block number for ``i`` alone. If you
76 need to know the most recent block number, you
77 need to use ``bitshares.blockchain.Blockchain``
78 """
79 print("new block: %s" % i)
80 # raise ValueError("Testing disabling")
81

82 def print_accountUpdate(self, i):
83 """ This method is called when the bot's account name receives
84 any update. This includes anything that changes
85 ``2.6.xxxx``, e.g., any operation that affects your account.
86 """
87 print("account: %s" % i)

3.5. Simple Echo Strategy 13



StakeMachine Documentation, Release 0.0.1

14 Chapter 3. Developing own Strategies



CHAPTER 4

Indices and tables

• genindex

• modindex

• search

15



StakeMachine Documentation, Release 0.0.1

16 Chapter 4. Indices and tables



Index

A
account (stakemachine.basestrategy.BaseStrategy at-

tribute), 8
add_state() (stakemachine.statemachine.StateMachine

method), 9

B
balance() (stakemachine.basestrategy.BaseStrategy

method), 8
balances (stakemachine.basestrategy.BaseStrategy

attribute), 8
BaseStrategy (class in stakemachine.basestrategy), 7

C
cancelall() (stakemachine.basestrategy.BaseStrategy

method), 8

E
Echo (class in stakemachine.strategies.echo), 10
error() (stakemachine.strategies.echo.Echo method), 10
execute() (stakemachine.basestrategy.BaseStrategy

method), 8

G
get_state() (stakemachine.statemachine.StateMachine

method), 9

M
market (stakemachine.basestrategy.BaseStrategy at-

tribute), 8

O
orders (stakemachine.basestrategy.BaseStrategy at-

tribute), 8

P
print_accountUpdate() (stakema-

chine.strategies.echo.Echo method), 11

print_marketUpdate() (stakema-
chine.strategies.echo.Echo method), 11

print_newBlock() (stakemachine.strategies.echo.Echo
method), 11

print_orderMatched() (stakema-
chine.strategies.echo.Echo method), 11

print_orderPlaced() (stakemachine.strategies.echo.Echo
method), 11

print_UpdateCallOrder() (stakema-
chine.strategies.echo.Echo method), 11

S
set_state() (stakemachine.statemachine.StateMachine

method), 9
StateMachine (class in stakemachine.statemachine), 9

17


	Basics
	Strategies
	Developing own Strategies
	Indices and tables

