
DEXBot Documentation
Release 0.0.1

Fabian Schuh

Aug 02, 2018

Contents

1 Basics 1

2 Strategies 7

3 Developing own Strategies 11

4 Indices and tables 19

i

ii

CHAPTER 1

Basics

1.1 Setup

1.1.1 Requirements – Linux

To run in the background you need systemd and lingering enabled:

sudo loginctl enable-linger $USER

On some systems, such as the Raspberry Pi, you need to reboot for this to take effect.

You need to have python3 installed, including the pip tool, and the development tools for C extensions, and the
OpenSSL libraries.

Plus for the easy configuration you need the whiptail command.

On Ubuntu/Debian/Raspian

Do:

sudo apt-get update
sudo apt-get install -y --install-recommends gcc libssl-dev python3-pip python3-dev
→˓whiptail inetutils-ping

On some Ubuntu systems, it will complain about missing packages: you first need to make sure you have the
universe repository:

sudo apt-get install -y software-properties-common
sudo add-apt-repository universe

NOTE: you don’t need to upgrade the system: the issue here is about the range of packages available, not how new/old
they are.

1

DEXBot Documentation, Release 0.0.1

Fedora

This has been tested on Fedora 27:

sudo yum install -y gcc openssl-devel python3-pip python3-devel newt

Arch

As root, do:

pacman -S libnewt python-pip gcc

Other Distros

On other distros you need to check the documentation for how to install these packages, the names should be very
similar.

1.1.2 Installation

:: sudo -H pip3 install https://github.com/Codaone/DEXBot/archive/master.zip

If you want the latest development version (which may not be tested at all), use git to download:

git clone git://github.com/ihaywood3/DEXBot/
cd DEXBot
sudo -H pip3 install -e .

Do not use the --user flag unless you understand its implications.

pip3 may complain about wanting to upgrade: this can be ignored.

1.1.3 Adding Keys

It is important to install the private key of your bot’s account into a local wallet. This can be done using uptick
which is installed as a dependency of dexbot:

uptick addkey

uptickwill ask you for a passphrase to protect private keys stored in its wallet. This has no relation to any passphrase
used in the web wallet.

You can get your private key from the BitShares Web Wallet: click the menu on the top right, then “Settings”, “Ac-
counts”, “View keys”, then tab “Owner Permissions”, click on the public key, then “Show”.

Look for the private key in Wallet Import Format (WIF), it’s a “5” followed by a long list of letters. Select, copy and
paste this into the screen where uptick asks for the key.

Check uptick successfully imported the key with:

uptick listaccounts

Yes, this process is a pain but for security reasons this part probably won’t ever be “easy”.

2 Chapter 1. Basics

https://github.com/Codaone/DEXBot/archive/master.zip

DEXBot Documentation, Release 0.0.1

1.1.4 Configuration

dexbot can be configured using:

dexbot-cli configure

This will walk you through the configuration process. Read more about this in the Configuration Questions.

1.2 Configuration Questions

The configuration consists of a series of questions about the bots you wish to configure.

1. The Bot Name.

Choose a unique name for your bot, DEXBot doesn’t care what you call it. It is used to identify the bot in the
logs so should be fairly short.

2. The Bot Strategy

DEXBot provides a number of different bot strategies. They can be quite different in how they behave (i.e.
spend your money) so it is important you understand the strategy before deploying a bot.

(a) Simple Echo Strategy For testing this just logs events on a market, does no trading.

(b) Follow Orders Strategy My (Ian Haywood) main bot, an extension of stakemachine’s wall, it has been used
to provide liquidity on AUD:BTS. Does function but by no mean perfect, see caveats in the docs.

3. Strategy-specific questions

The questions that follow are determined by the strategy chosen, and each strategy will have its own questions
around amounts to trade, spreads etc. See the strategy documentations linked above. But the first two strategy
questions are nearly universal amongst the strategies so are documented here:

(a) The Account.

This is the same account name as the one where you entered the keys into uptick earlier on: the bot
must always have the private key so it can execute trades.

(b) The Market.

This is the main market the bot trade on. They are specified by the quote asset, a colon (:), and the base
asset, for example the market for BitShares priced in US dollars is called BTS:USD. BitShares always
provides a “reverse” market so there will be a USD:BTS with the same trades, the only difference is the
prices will be the inverse (1/x) of BTS:USD.

4. the Node.

DEXBot needs to have a public node (also called “witness”) that gives access to the BitShares blockchain.

DEXBot uses wss://status200.bitshares.apasia.tech/ws as its default node If you run your
own witness node then you can edit config.yml to change the node value.

5. Reporting

DEXBot can send regular reports via e-mail of its activities. See DEXBot E-mail Reports

6. Systemd.

If the configuration tool detects systemd (the process control system on most modern Linux systems) it will
offer to install dexbot as a background service, this will run continuously in the background whenever you are
logged in. if you enabled lingering as described, it will run whenever the computer is turned on.

1.2. Configuration Questions 3

DEXBot Documentation, Release 0.0.1

7. The Passphrase

If you select yes above, the final question will be the password you entered to protect the private key with
uptick. Entering it here is a security risk: the configuration tool will save the password to a file on the
computer. This means anyone with access to the computer can access your private key and spend the money in
your account.

There is no alternative to enable 24/7 bot trading without you being physically present to enter the password
every time the bot wnats to execute a trade (which defeats the purpose of using a bot). It does mean you need
to think carefully where dexbot is installed: my advice is on the computer in a secure location that you control
behind a properly- configured firewall/router.

1.2.1 Manual Running

If you are not using systemd, the bot can be run manually by:

dexbot-cli run

It will ask for your wallet passphrase (that you provided when adding your private key using uptick addkey).

1.3 DEXBot E-mail Reports

DEXBot can send e-mail reports at regular intervals when its running in the background.

1.3.1 Configuration Questions

1. Report frequency.

You get several options of number of days up to a week. If you want a different timeframe look in config.yml
for the days option under reporter, can be any integer number of days. If you select “Never” then no reports are
sent at all.

2. Send to address

The address to send reports to, must be in the traditional username@server format.

3. Send from address

The address the DEXBot e-mails will appear to be from. By default DEXBot uses the name of the user it’s
running as, and the name of the server it’s running on. (Note this default may not work depending on your setup,
a lot of e-mail servers will check the sending server name is valid from its point of view). use the same e-mail
as “send to” above if you are unsure.

4. SMTP Server.

The hostname of the e-mail server to use. Blank means the local server (so this has to be setup).

5. SMTP Port.

Traditionally this is always “25”. Some public e-mail setups (such as Gmail) require you to use the “submission”
port (587): check the documentation of the e-mail service you are trying to use.

6. Login

Use if the SMTP server requires a login name (most public ones do, but an ISP-provided or local network one
may not), otherwise leave blank.

4 Chapter 1. Basics

mailto:username@server

DEXBot Documentation, Release 0.0.1

7. Password

If you need to provide a login then a password is usually required too.

1.3.2 Reports

Reports have the subject “DEXBot Regular Report” and are HTML e-mails with a section for each bot, in each section
the configuration values are quoted, then a graph is supplied by the bot.

Mst trading bots will provide a graph of the base and quote account balances and the total value (hopefully going up).
These graph lines are all in the “quote” unit, using the price at the end of the reporting period (so hopefully factoring
out shifts in capital value and you can actually see the effect of the bots trading).

Finally the log entries for each bot over the reporting period are supplied.

1.3. DEXBot E-mail Reports 5

DEXBot Documentation, Release 0.0.1

6 Chapter 1. Basics

CHAPTER 2

Strategies

2.1 Simple Echo Strategy

2.1.1 API

2.1.2 Full Source Code

1 from dexbot.basestrategy import BaseStrategy
2

3

4 class Strategy(BaseStrategy):
5 """
6 Echo strategy
7 Strategy that logs all events within the blockchain
8 """
9

10 def __init__(self, *args, **kwargs):
11 super().__init__(*args, **kwargs)
12

13 """ set call backs for events
14 """
15 self.onOrderMatched += self.print_orderMatched
16 self.onOrderPlaced += self.print_orderPlaced
17 self.onUpdateCallOrder += self.print_UpdateCallOrder
18 self.onMarketUpdate += self.print_marketUpdate
19 self.ontick += self.print_newBlock
20 self.onAccount += self.print_accountUpdate
21 self.error_ontick = self.error
22 self.error_onMarketUpdate = self.error
23 self.error_onAccount = self.error
24

25 def error(self, *args, **kwargs):
26 """ What to do on an error

(continues on next page)

7

DEXBot Documentation, Release 0.0.1

(continued from previous page)

27 """
28 # Cancel all future execution
29 self.disabled = True
30

31 def print_orderMatched(self, i):
32 """ Is called when an order in the market is matched
33

34 A developer may want to filter those to identify
35 own orders.
36

37 :param bitshares.price.FilledOrder i: Filled order details
38 """
39 self.log.info("order matched: %s" % i)
40

41 def print_orderPlaced(self, i):
42 """ Is called when a new order in the market is placed
43

44 A developer may want to filter those to identify
45 own orders.
46

47 :param bitshares.price.Order i: Order details
48 """
49 self.log.info("order placed: %s" % i)
50

51 def print_UpdateCallOrder(self, i):
52 """ Is called when a call order for a market pegged asset is updated
53

54 A developer may want to filter those to identify
55 own orders.
56

57 :param bitshares.price.CallOrder i: Call order details
58 """
59 self.log.info("call update: %s" % i)
60

61 def print_marketUpdate(self, i):
62 """ Is called when Something happens in your market.
63

64 This method is actually called by the backend and is
65 dispatched to ``onOrderMatched``, ``onOrderPlaced`` and
66 ``onUpdateCallOrder``.
67

68 :param object i: Can be instance of ``FilledOrder``, ``Order``, or
→˓``CallOrder``

69 """
70 self.log.info("marketupdate: %s" % i)
71

72 def print_newBlock(self, i):
73 """ Is called when a block is received
74

75 :param str i: The hash of the block
76

77 .. note:: Unfortunately, it is currently not possible to
78 identify the block number for ``i`` alone. If you
79 need to know the most recent block number, you
80 need to use ``bitshares.blockchain.Blockchain``
81 """
82 self.log.info("new1 block: %s" % i)

(continues on next page)

8 Chapter 2. Strategies

DEXBot Documentation, Release 0.0.1

(continued from previous page)

83 # raise ValueError("Testing disabling")
84

85 def print_accountUpdate(self, i):
86 """ This method is called when the worker's account name receives
87 any update. This includes anything that changes
88 ``2.6.xxxx``, e.g., any operation that affects your account.
89 """
90 self.log.info("account: %s" % i)

2.2 Follow Orders Strategy

This strategy places a buy and a sell walls into a specific market. It buys below a base price, and sells above the base
price.

It then reacts to orders filled (hence the name), when one order is completely filled, new walls are constructed using
the filled order as the new base price.

2.2.1 Configuration Questions

Spread

Percentage difference between buy and sell price. So a spread of 5% means the bot sells at 2.5% above the base price
and buys 2.5% below.

Wall Percent

This is the “wall height”: the default amount to buy/sell, expressed as a percentage of the account balance. So for
sells, its that percentage of your balance of the ‘quote’ asset, and for buys its that same percentage of your balance of
the ‘base’ asset.

The advantage of this method (a change from early versions with ‘fixed’ wall heights) is it makes the bot ‘self-
correcting’ if it sells to much of one asset, it will enter small orders for that asset, until the market gives it and
opposing trade and it can rebalance itself.

Remember if you are using ‘staggers’ (see below) each order is the same: so you probably need to use quite a small
percentage here.

Max

The bot will stop trading if the base price goes above this value, it will shut down until you manually restart it. (i.e. it
won’t restart itself if the price drops)

Remember prices are base/quote, so on AUD:BTS, that’s the price of 1 AUD in BTS.

Min

Same in reverse: stop running if prices go below this value.

2.2. Follow Orders Strategy 9

DEXBot Documentation, Release 0.0.1

Start

The initial price, as a percentage of the spread between the highest bid and lowest ask. So “0” means the highest bid,
“100” means the lowest ask, 50 means the midpoint between them, and so on.

Important: you need to look at your chosen market carefully and get a sense of its orderbook before setting this, justing
setting “50” blind can lead to stupid prices especially in illiquid markets.

Reset

Normally the bot checks if it has previously placed orders in the market and uses those. If true, this option forces the
bot to cancel any existing orders when it starts up, and re-calculate the starting price as above.

Staggers

Number of additional (or “staggered”) orders to place. By default this is “1” (so no additional orders). 2 or more
means multiple sell and buy orders at different prices.

Stagger Spread

The gap between each staggered order (as a percentage of the base price).

So say the spread is 5%, staggers is “2”, and “stagger spread” is 4%, then there will be 2 buy orders: 2.5% and 6.5%
(4% + 2.5%) below the base price, and two sells 2.5% and 6.5% above. The order amounts are all the same (see wall
percent option).

2.2.2 Bot problems

Like all liquidity bots, the bot really works best with a “even” market, i.e. where are are counterparties both buying
and selling.

With a severe “bear” market, the bot can be stuck being the sole participant that is still buying against a herd of
panicked humans frantically selling. It repeatingly buys into the market and so it can run out of one asset quite quickly
(although it will have bought it at lower and lower prices).

I don’t have a simple good solution (and happy to hear suggestions from experienced traders)

10 Chapter 2. Strategies

CHAPTER 3

Developing own Strategies

3.1 Manual Configuration

The configuration of dexbot internally happens through a YAML formatted file. Unless you are developing or want
to use a custom strategy, you don’t need to edit this.

The default file name is config.yml, and dexbot only seeks the file in the current directory.

Otherwise you can specify a different config file using the --configfile X parameter when calling dexbot
run.

3.1.1 The config.yml file

The BitShares endpoint to talk to
node: "wss://node.testnet.bitshares.eu"

List of bots
bots:

Name of the bot. This is mostly for logging and internal
use to distinguish different bots
NAME_OF_BOT:

Python module to look for the strategy (can be custom)
dexbot will search in ~/bots as well as standard dirs
module: "dexbot.strategies.echo"

The bot class in that module to use
bot: Echo

The market to subscribe to
market: GOLD:TEST

(continues on next page)

11

DEXBot Documentation, Release 0.0.1

(continued from previous page)

The account to use for this bot
account: xeroc

Custom bot configuration
foo: bar

3.1.2 Using the configuration in custom strategies

The bot’s configuration is available to in each strategy as dictionary in self.bot. The whole configuration is
avaialable in self.config. The name of your bot can be found in self.name.

3.2 Base Strategy

All strategies should inherit dexbot.basestrategy.BaseStrategy which simplifies and unifies the develop-
ment of new strategies.

3.2.1 API

3.3 Storage

This class allows to permanently store bot-specific data in a sqlite database (dexbot.sqlite) using:

self["key"] = "value"

Note: Here, self refers to the instance of your bot’s strategy when coding yaour own strategy.

The value is persistently stored and can be access later on using:

print(self["key"]).

Note: This applies a json.loads(json.dumps(value))!

3.3.1 SQLite database

The user’s data is stored in its OS protected user directory:

OSX:

• ~/Library/Application Support/<AppName>

Windows:

• C:Documents and Settings<User>Application DataLocal Settings<AppAuthor><AppName>

• C:Documents and Settings<User>Application Data<AppAuthor><AppName>

Linux:

• ~/.local/share/<AppName>

12 Chapter 3. Developing own Strategies

DEXBot Documentation, Release 0.0.1

Where <AppName> is dexbot and <AppAuthor> is ChainSquad GmbH.

3.3.2 Simple example

1 from dexbot.basestrategy import BaseStrategy
2

3

4 class Strategy(BaseStrategy):
5 """
6 Storage demo strategy
7 Strategy that prints all new blocks in the blockchain
8 """
9

10 def __init__(self, *args, **kwargs):
11 super().__init__(*args, **kwargs)
12 self.ontick += self.tick
13

14 def tick(self, i):
15 print("previous block: %s" % self["block"])
16 print("new block: %s" % i)
17 self["block"] = i

Example Output:

Current Wallet Passphrase:
previous block: None
new block: 008c4c2424e6394ad4bf5a9756ae2ee883b0e049
previous block: 008c4c2424e6394ad4bf5a9756ae2ee883b0e049
new block: 008c4c257a76671144fdba251e4ebbe61e4593a4
previous block: 008c4c257a76671144fdba251e4ebbe61e4593a4
new block: 008c4c2617851b31d0b872e32fbff6f8248663a3

3.4 Statemachine

The base strategy comes with a state machine that can be used by your strategy.

Similar to Storage, the methods of this class can be used in your strategy directly, e.g., via self.get_state(),
since the class is inherited by Base Strategy.

3.4.1 API

class dexbot.statemachine.StateMachine(*args, **kwargs)
Generic state machine

add_state(state)
Add a new state to the state machine

Parameters state (str) – Name of the state

get_state()
Return state of state machine

set_state(state)
Change state of the state machine

3.4. Statemachine 13

DEXBot Documentation, Release 0.0.1

Parameters state (str) – Name of the new state

3.5 Events

The websocket endpoint of BitShares has notifications that are subscribed to and dispatched by dexbot. This uses
python’s native Events. The following events are available in your strategies and depend on the configuration of
your bot/strategy:

• onOrderMatched: Called when orders in your market are matched

• onOrderPlaced: Called when a new order in your market is placed

• onUpdateCallOrder: Called if one of the assets in your market is a market-pegged asset and someone
updates his call position

• onMarketUpdate: Called whenever something happens in your market (includes matched orders, placed
orders and call order updates!)

• ontick: Called when a new block is received

• onAccount: Called when your account’s statistics is updated (changes to 2.6.xxxx with xxxx being your
account id number)

• error_ontick: Is called when an error happend when processing ontick

• error_onMarketUpdate: Is called when an error happend when processing onMarketUpdate

• error_onAccount: Is called when an error happend when processing onAccount

3.5.1 Simple Example

class Simple(BaseStrategy):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

""" set call backs for events
"""
self.onOrderMatched += print
self.onOrderPlaced += print
self.onUpdateCallOrder += print
self.onMarketUpdate += print
self.ontick += print
self.onAccount += print

3.6 Wall Strategy

This strategy simply places a buy and a sell wall into a specific market using a specified account.

3.6.1 Example Configuration

14 Chapter 3. Developing own Strategies

DEXBot Documentation, Release 0.0.1

BitShares end point
node: "wss://node.bitshares.eu"

List of Bots
bots:

Only a single Walls Bot
Walls:

The Walls strategy module and class
module: dexbot.strategies.walls
bot: Walls

The market to serve
market: HERO:BTS

The account to sue
account: hero-market-maker

We shall bundle operations into a single transaction
bundle: True

Test your conditions every x blocks
test:

blocks: 10

Where the walls should be
target:

They relate to the price feed
reference: feed

There should be an offset
offsets:

buy: 2.5
sell: 2.5

We'd like to use x amount of quote (here: HERO)
in the walls
amount:

buy: 5.0
sell: 5.0

When the price moves by more than 2%, update the walls
threshold: 2

3.6.2 Source Code

1 from math import fabs
2 from collections import Counter
3 from bitshares.amount import Amount
4 from dexbot.basestrategy import BaseStrategy, ConfigElement
5 from dexbot.errors import InsufficientFundsError
6

7

(continues on next page)

3.6. Wall Strategy 15

DEXBot Documentation, Release 0.0.1

(continued from previous page)

8 class Strategy(BaseStrategy):
9 """

10 Walls strategy
11 """
12

13 @classmethod
14 def configure(cls):
15

16 return BaseStrategy.configure() + [
17 ConfigElement(
18 "spread",
19 "int",
20 5,
21 "the spread between sell and buy as percentage",
22 (0,
23 100)),
24 ConfigElement(
25 "threshold",
26 "int",
27 5,
28 "percentage the feed has to move before we change orders",
29 (0,
30 100)),
31 ConfigElement(
32 "buy", "float", 0.0, "the default amount to buy", (0.0, None)),
33 ConfigElement("sell", "float", 0.0,
34 "the default amount to sell", (0.0, None)),
35 ConfigElement(
36 "blocks",
37 "int",
38 20,
39 "number of blocks to wait before re-calculating",
40 (0,
41 10000)),
42 ConfigElement(
43 "dry_run",
44 "bool",
45 False,
46 "Dry Run Mode\nIf Yes the bot won't buy or sell anything, just log

→˓what it would do.\nIf No, the bot will buy and sell for real.",
47 None)
48]
49

50 def __init__(self, *args, **kwargs):
51 super().__init__(*args, **kwargs)
52

53 # Define Callbacks
54 self.onMarketUpdate += self.test
55 self.ontick += self.tick
56 self.onAccount += self.test
57

58 self.error_ontick = self.error
59 self.error_onMarketUpdate = self.error
60 self.error_onAccount = self.error
61

62 # Counter for blocks
63 self.counter = Counter()

(continues on next page)

16 Chapter 3. Developing own Strategies

DEXBot Documentation, Release 0.0.1

(continued from previous page)

64

65 # Tests for actions
66 self.test_blocks = self.worker.get("test", {}).get("blocks", 0)
67

68 def error(self, *args, **kwargs):
69 self.disabled = True
70 self.cancelall()
71 self.log.info(self.execute())
72

73 def updateorders(self):
74 """ Update the orders
75 """
76 self.log.info("Replacing orders")
77

78 # Canceling orders
79 self.cancelall()
80

81 # Target
82 target = self.worker.get("target", {})
83 price = self.getprice()
84

85 # prices
86 buy_price = price * (1 - target["offsets"]["buy"] / 100)
87 sell_price = price * (1 + target["offsets"]["sell"] / 100)
88

89 # Store price in storage for later use
90 self["feed_price"] = float(price)
91

92 # Buy Side
93 if float(self.balance(self.market["base"])
94) < buy_price * target["amount"]["buy"]:
95 InsufficientFundsError(
96 Amount(
97 target["amount"]["buy"] *
98 float(buy_price),
99 self.market["base"]))

100 self["insufficient_buy"] = True
101 else:
102 self["insufficient_buy"] = False
103 self.market.buy(
104 buy_price,
105 Amount(target["amount"]["buy"], self.market["quote"]),
106 account=self.account
107)
108

109 # Sell Side
110 if float(self.balance(self.market["quote"])
111) < target["amount"]["sell"]:
112 InsufficientFundsError(
113 Amount(
114 target["amount"]["sell"],
115 self.market["quote"]))
116 self["insufficient_sell"] = True
117 else:
118 self["insufficient_sell"] = False
119 self.market.sell(
120 sell_price,

(continues on next page)

3.6. Wall Strategy 17

DEXBot Documentation, Release 0.0.1

(continued from previous page)

121 Amount(target["amount"]["sell"], self.market["quote"]),
122 account=self.account
123)
124

125 self.log.info(self.execute())
126

127 def getprice(self):
128 """ Here we obtain the price for the quote and make sure it has
129 a feed price
130 """
131 target = self.worker.get("target", {})
132 if target.get("reference") == "feed":
133 assert self.market == self.market.core_quote_market(
134), "Wrong market for 'feed' reference!"
135 ticker = self.market.ticker()
136 price = ticker.get("quoteSettlement_price")
137 assert abs(price["price"]) != float(
138 "inf"), "Check price feed of asset! (%s)" % str(price)
139 return price
140

141 def tick(self, d):
142 """ ticks come in on every block
143 """
144 if self.test_blocks:
145 if not (self.counter["blocks"] or 0) % self.test_blocks:
146 self.test()
147 self.counter["blocks"] += 1
148

149 def test(self, *args, **kwargs):
150 """ Tests if the orders need updating
151 """
152 orders = self.orders
153

154 # Test if still 2 orders in the market (the walls)
155 if len(orders) < 2 and len(orders) > 0:
156 if (
157 not self["insufficient_buy"] and
158 not self["insufficient_sell"]
159):
160 self.log.info("No 2 orders available. Updating orders!")
161 self.updateorders()
162 elif len(orders) == 0:
163 self.updateorders()
164

165 # Test if price feed has moved more than the threshold
166 if (
167 self["feed_price"] and
168 fabs(1 - float(self.getprice()) / self["feed_price"]) > self.worker[

→˓"threshold"] / 100.0
169):
170 self.log.info(
171 "Price feed moved by more than the threshold. Updating orders!")
172 self.updateorders()

18 Chapter 3. Developing own Strategies

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

DEXBot Documentation, Release 0.0.1

20 Chapter 4. Indices and tables

Index

A
add_state() (dexbot.statemachine.StateMachine method),

13

G
get_state() (dexbot.statemachine.StateMachine method),

13

S
set_state() (dexbot.statemachine.StateMachine method),

13
StateMachine (class in dexbot.statemachine), 13

21

	Basics
	Strategies
	Developing own Strategies
	Indices and tables

